Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells.

نویسندگان

  • Ian F Smith
  • Ian Parker
چکیده

The spatiotemporal patterning of Ca(2+) signals regulates numerous cellular functions, and is determined by the functional properties and spatial clustering of inositol trisphosphate receptor (IP(3)R) Ca(2+) release channels in the endoplasmic reticulum membrane. However, studies at the single-channel level have been hampered because IP(3)Rs are inaccessible to patch-clamp recording in intact cells, and because excised organelle and bilayer reconstitution systems disrupt the Ca(2+)-induced Ca(2+) release (CICR) process that mediates channel-channel coordination. We introduce here the use of total internal reflection fluorescence microscopy to image single-channel Ca(2+) flux through individual and clustered IP(3)Rs in intact mammalian cells. This enables a quantal dissection of the local calcium puffs that constitute building blocks of cellular Ca(2+) signals, revealing stochastic recruitment of, on average, approximately 6 active IP(3)Rs clustered within <500 nm. Channel openings are rapidly ( approximately 10 ms) recruited by opening of an initial trigger channel, and a similarly rapid inhibitory process terminates puffs despite local [Ca(2+)] elevation that would otherwise sustain Ca(2+)-induced Ca(2+) release indefinitely. Minimally invasive, nano-scale Ca(2+) imaging provides a powerful tool for the functional study of intracellular Ca(2+) release channels while maintaining the native architecture and dynamic interactions essential for discrete and selective cell signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp

Optical single-channel recording is a novel tool for the study of individual Ca2+-permeable channels within intact cells under minimally perturbed physiological conditions. As applied to the functioning and spatial organization of IP3Rs, this approach complements our existing knowledge, which derives largely from reduced systems - such as reconstitution into lipid bilayers and patch clamping of...

متن کامل

Termination of calcium puffs and coupled closings of inositol trisphosphate receptor channels.

Calcium puffs are localized Ca(2+) signals mediated by Ca(2+) release from the endoplasmic reticulum (ER) through clusters of inositol trisphosphate receptor (IP3R) channels. The recruitment of IP3R channels during puffs depends on Ca(2+)-induced Ca(2+) release, a regenerative process that must be terminated to maintain control of cell signaling and prevent Ca(2+) cytotoxicity. Here, we studied...

متن کامل

A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback.

Ca2+ liberation through inositol 1,4,5-trisphosphate receptor (IP3R) channels generates complex patterns of spatiotemporal cellular Ca2+ signals owing to the biphasic modulation of channel gating by Ca2+ itself. These processes have been extensively studied in Xenopus oocytes, where imaging studies have revealed local Ca2+ signals ("puffs") arising from clusters of IP3R, and patch-clamp studies...

متن کامل

Temperature dependence of IP3-mediated local and global Ca2+ signals.

We examined the effect of temperature (12-40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly ac...

متن کامل

Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals.

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 15  شماره 

صفحات  -

تاریخ انتشار 2009